1	The nature and extent of the Mesoproterozoic Picuris orogeny in Colorado
2	This is a preliminary GSA Guidebook by Kuiper, et. al. May 9, 2022
3	For a Colorado Scientific Society field trip on June 7, 2022
4	Yvette D. Kuiper
5	Department of Geology & Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
6	Ruth F. Aronoff
7	Department of Earth, Environmental & Sustainability Sciences, Furman University, Greenville, South Carolina
8	29613, USA
9	Christopher G. Daniel
10	Department of Geology & Environmental Geosciences, Bucknell University, Lewisburg, Pennsylvania 17837, USA
11	Madison Bzdok
12	Department of Geology & Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
13	(currently at Newmont)
14	
15	ABSTRACT
16	The Mesoproterozoic is a controversial time within the Earth's history, and is
17	characterized by high T/P ratios in metamorphic rocks, a large volume of extensional plutons,
18	very few economic mineral deposits, and (arguably) a slow-down in plate tectonic processes. In
19	Laurentia, ~1.48–1.35 Ga is well known as a time of ferroan magmatism. Recently, a ~1.50–1.35
20	Ga orogenic belt was proposed that spanned Laurentia from present-day eastern Canada to the
21	southwestern United States. Unlike the preceding Paleoproterozoic Yavapai/Mazatzal orogenies
22	and the subsequent late Mesoproterozoic Grenville orogeny, the early-mid-Mesoproterozoic
23	Picuris orogeny in the southwestern U.S. was relatively unrecognized until about two decades
24	ago, when geochronology data became more abundant. In multiple study areas of Arizona and
25	New Mexico, deposition, metamorphism and deformation previously ascribed to the
	Yavapai/Mazatzal orogenies proved to be part of the ~1.4 Ga Picuris orogeny. In Colorado, the
	nature and extent of the Picuris orogeny is poorly understood. On this trip, we discuss new

evidence for the Picuris orogeny in the central Colorado Front Range, from Black Hawk in the
central Colorado Front Range to the Wet Mountains, Colorado. We will discuss how the Picuris
orogeny reactivated or overprinted earlier structures, and perhaps controlled the location of
structures associated with Cambrian rifting, the Cretaceous-Paleogene Laramide orogeny, and
the Rio Grande Rift, and associated mineralization. We will also discuss what made the Picuris
orogeny, and the Mesoproterozoic unique within the Earth's history.

32

33 INTRODUCTION

Globally, the Mesoproterozoic is characterized by a number of anomalies compared with 34 pre- and post-Mesoproterozoic periods. These include a decrease in the number of passive 35 margins, detrital zircons, greenstone-belt collisions, eclogites, granulites, carbonatites, and 36 orogenic gold (Bradley et al., 2011), higher T/P ratios of metamorphic rocks, and more juvenile 37 and thinned crust (Brown et al., 2020; Spencer et al., 2021). The reason for these anomalies is 38 39 not known, but was interpreted previously as a slow-down of tectonic processes during the Columbia/Nuna-Rodinia supercontinent transition, or as a period of plate tectonics characterized 40 by hot, thin, and low orogens (Spencer et al., 2021, and references therein). The Mesoproterozoic 41 42 Picuris orogen of the southwestern U.S. (Daniel et al., 2013, 2022a,b), provides an opportunity to investigate and discuss these processes. The focus of this field trip is to examine the nature and 43 44 extent of the Picuris orogen in the Colorado Front Range. We will also discuss how it reactivates 45 earlier Paleoproterozoic structures and may control later Phanerozoic structures.

Proterozoic rocks of the southwestern U.S. (Figs. 1, 2) preserve a record of significant
Paleoproterozoic crustal growth southward from the Archean Wyoming Province (present day
coordinates), and experienced multiple orogenic events including the Paleoproterozoic Yavapai

and Mazatzal orogenies (Whitmeyer and Karlstrom, 2007; Jones et al., 2009; Holland et al., 49 2020), and the Mesoproterozoic Picuris orogeny (Daniel et al., 2013). Voluminous ~1.48–1.35 50 Ga granitic magmatic rocks are also associated with the Mesoproterozoic, and make up about 51 25–30% of the exposed Proterozoic rock in the southwestern U.S. The occurrence of significant 52 ferroan, granitic magmatic rocks, typically attributed to an extensional environment (Anderson 53 54 and Morrison, 2005; Frost and Frost, 2022), and crustal thickening associated with the contractional Picuris orogeny overlap in time and space and present and an intriguing 55 contradiction with respect to the tectonic setting of Laurentia during the Mesoproterozoic (Daniel 56 et al., 2022a,b; Frost and Frost, 2022). 57 In Colorado, ~1.4 Ga deformation and metamorphism were previously recognized and 58 interpreted as relatively localized events related to pluton emplacement or as reactivation along 59

60 Paleoproterozoic foliations and shear zones (Fig. 2; Pedrick et al., 1998; Selverstone et al., 2000;

61 Shaw et al., 2001; McCoy et al., 2005, Shaw and Allen, 2007; Allen and Shaw, 2011; Lytle,

62 2016). This field trip includes visits to exposures in the central Colorado Front Range and in the

63 Wet Mountains (Fig. 2) to examine new evidence for ~ 1.4 Ga metamorphism and deformation,

65 discuss the larger scale nature of deformation across the southern margin of Laurentia, and how

and discuss how to separate the Mesoproterozoic from older Paleoproterozoic events. We will

66 the Picuris Orogen correlates with the Baraboo and Pinware orogens of the midcontinent and

67 eastern Canada, respectively (Fig. 1). We also highlight overprinting Cambrian rift structures and

68 mineralized rocks, and Cretaceous–Paleogene structures and mineralized rocks associated with

69 the Laramide orogeny. We will discuss how and why the Mesoproterozoic Picuris orogeny was

70 different from earlier and later orogenies on Earth and how Proterozoic tectonism may have

71 controlled later structures and mineralization.

64

GSA designated this as a Warren Hamilton field trip, which supports student
participation. Warren B. Hamilton (1925–2018) integrated geology and geophysics into largescale tectonic and planetary-scale syntheses. He was an outside-the-box thinker and always
encouraged stimulating and thought-provoking discussion. In that spirit, this field trip will have
'questions for discussion' at each stop, where we encourage all to discuss those questions and

others that may arise, and particularly include our early-career participants.

78

79 PROTEROZOIC OROGENIC EVENTS IN COLORADO

80 The Yavapai and Mazatzal Orogenies

The Paleoproterozoic Yavapai and Mazatzal orogenies were first defined in Arizona 81 (Karlstrom and Bowring, 1988; Bowring and Karlstrom, 1990) and have subsequently been 82 extended to the NE and across the midcontinent (Whitmeyer and Karlstrom, 2007). 83 Paleoproterozoic amphibolite facies metasedimentary and metaigneous rocks in the Colorado 84 85 Front Range (e.g., Gable, 2000; Widmann et al., 2000; Kellogg et al., 2008) were interpreted as juvenile arc terranes with associated basins that amalgamated and accreted to the Wyoming 86 Craton part of Laurentia between ~ 1.8 Ga and ~ 1.6 Ga (Whitmeyer and Karlstrom, 2007). 87 88 Alternatively, Jones et al. (2009) and Holland et al. (2020) proposed that the Paleoproterozoic rocks of the southwestern U.S. formed largely within a continental arc setting that experienced 89 90 alternating periods of slab roll and extension to create back-arc basins that were subsequently 91 closed and inverted by advancement of the subduction zone and compression. In general, two periods of orogenesis including the ~1.72–1.68 Ga Yavapai and ~1.65–1.6 Ga Mazatzal 92 93 orogenies have been recognized across the southwestern U.S. for more than 35 years, which may 94 or may not have been a continuous period of deformation (Jones and Connelly, 2006; Mahan et

al., 2013). The resultant Yavapai crustal province is now a NE-trending zone of predominantly 95 juvenile crust that extends from Arizona to Michigan (Fig. 2; Whitmeyer and Karlstrom, 2007), 96 and forms most of the Proterozoic basement of Colorado. Calc-alkaline plutons intruded the 97 Yavapai basement of Colorado between about ~1.66 Ga and 1.65 Ga. The Mazatzal crustal 98 province extends from Arizona to Quebec and Labrador in Canada (Figs. 1, 2; Whitmeyer and 99 100 Karlstrom, 2007), and probably includes older Paleoproterozoic crustal material (Holland et al., 2020) Between ~ 1.60 Ga and ~ 1.5 Ga Laurentia underwent a period of tectonic quiescence 101 (Whitmeyer and Karlstrom, 2007; Doe et al., 2012; Aronoff, et al., 2016). Interestingly, 102 deformation in the Mazatzal Mountains of Arizona is now known to be $\sim 1.47-1.43$ Ga (Doe et 103 al., 2012; Doe and Daniel 2019), the general age of the Picuris orogeny. 104

105

106 The Picuris Orogeny

Mesoproterozoic ~1.5–1.45 Ga deposition of siliciclastic sediments in the southwestern 107 U.S. was first reported in the Picuris Mountains, New Mexico (Jones et al., 2011; Fig. 1) and the 108 upper Salt River Canyon, Arizona (Doe et al., 2012; Fig. 1). Additional rocks of this age are 109 known from the Defiance uplift, Four Peaks, and the northern Mazatzal Mountains of Arizona 110 111 (Doe et al., 2013, Mako et al., 2015; Doe and Daniel, 2019; Figs. 1, 2). These rocks and the underlying Yavapai and Mazatzal basement across much of central and northern New Mexico 112 113 experienced greenschist to uppermost amphibolite facies metamorphism and deformation 114 between ~1.44 Ga and ~1.37 Ga, including the Tusas and Taos mountains of New Mexico (Pedrick et al., 1998; Kopera, 2003; Fig. 2). Several areas also experienced emplacement of 115 ~1.45–1.40 Ga granitic plutons and preserve contact metamorphic aureoles (Four Peaks, upper 116 117 Salt River Canyon, southern Picuris Mountains; Fig. 2). The recognition of ~1.50–1.35 Ga

118	deposition, regional metamorphism and deformation, and magmatism led to the proposed Picuris
119	orogeny (Daniel et al., 2013; Aronoff et al., 2016; Bollen et al., 2022).
120	Mesoproterozoic, ~1.43–1.36 Ga metamorphism and deformation is also observed in the
121	Wet Mountains, the Needle Mountains, and the region around the Black Canyon of the
122	Gunnison, southern Colorado, Big Thompson Canyon of central Colorado, (Fig. 2; Shaw et al.,
123	2001; McCoy et al., 2005; Jessup et al., 2006; Jones et al., 2010; Shah and Bell, 2012; Mahan et
124	al., 2013; Lytle, 2016). Recent and ongoing research from the central Front Range of Colorado
125	also indicates Mesoproterozoic deformation, not only reactivation along shear zones, but also
126	pervasive folding (Lytle, 2016; Mahatma, 2019; Powell, 2020; Shockley, 2021). This is further
127	discussed below.
128	The Picuris orogen is part of a larger, trans-Laurentian orogen that include the Baraboo
129	and Pinware orogens of the midcontinent and eastern Canada, respectively (Daniel et al., 2022a,
130	b; Fig. 1), This Pinware-Baraboo-Picuris orogenic belt is attributed to a convergent or
131	accretionary plate margin across the southern margin of Laurentia (present-day coordinates). In
132	eastern Canada, the \sim 1.51–1.46 Ga Pinware orogeny involved convergence and subduction
133	within the proto-Grenville province in Labrador and eastern Quebec (Tucker and Gower, 1994;
134	Gower and Krogh, 2002; Groulier et al., 2020). Similarly, the midcontinent Baraboo orogeny
135	yielded 1493–1465 Ma muscovite ⁴⁰ Ar/ ³⁹ Ar ages, and plutons in that same age range (Medaris et
136	al., 2021). The ~1.48–1.35 Ga Picuris orogeny in northern New Mexico involved convergence
137	and possible collision between Laurentia and juvenile crust along the southern margin of
138	Laurentia (Aronoff et. al., 2016). This created shortening and thickening of Paleo- and
139	Mesoproterozoic rocks (Daniel and Pyle, 2006; Daniel et al., 2013; Aronoff et al., 2016; Daniel
140	et al. 2022b).

141	Between ~1.48 Ga and 1.36 Ga, granitoids were emplaced in a broad belt spanning from
142	the southwestern U.S. through the Baltic shield (Fig. 2; Windley, 1993; Karlstrom and
143	Humphreys, 1998; du Bray et al., 2018). These granitoids may be divided into ~1.49–1.41 Ga
144	and ~1.41–1.34 Ga pulses (Whitmeyer and Karlstrom, 2007). They were interpreted as
145	anorogenic (Anderson and Morrison, 2005; Goodge and Vervoort, 2006). However, episodes of
146	significant deformation and metamorphism are now recognized in parts of New Mexico, Arizona
147	and Colorado at these times of pluton emplacements (Nyman et al., 1994; Kirby et al., 1999;
148	McCoy, 2001; Daniel and Pyle, 2006; Jones et al. 2010; Shah and Bell., 2012; Doe et al., 2013;
149	Mahan et al., 2013; Mako et al., 2015; Aronoff et al., 2016; Lytle, 2016, Bollen et al., 2022;
150	Daniel et al., 2022b,), suggesting a convergent setting.

151

152 The Grenville Orogeny

The ~1.2–1.0 Ga Grenville orogeny along the SE margin of Laurentia resulted in the 153 emplacement of the ~1.1 Ga Pikes Peak Batholith in Colorado, but no significant deformation 154 (Whitmeyer and Karlstrom, 2007; Guitreau et al., 2016). Cambrian rifting in Colorado only 155 occurred in the Wet Mountains, and resulted in REE-rich alkaline intrusive rocks and veins 156 (Armbrustmacher, 1988). Elsewhere, Proterozoic deformation was overprinted by the Late 157 Cretaceous-Eocene Laramide orogeny (e.g., English et al., 2003; Kellogg et al., 2008) and 158 associated mineralization. Paleogene mineralization was concentrated within the Colorado 159 160 Mineral Belt (Fig. 2) and may or may not have been controlled by Proterozoic structures such as shear zones (Tweto and Simms, 1963; Caine et al., 2010; Chapin, 2012). The latest deformation 161 was localized extension associated with the Oligocene and younger Rio Grande Rift, which 162

trends northward from Socorro, New Mexico to Leadville, Colorado (Olsen et al., 1987; Chapinand Cather, 1994; Caine and Minor, 2009; Minor et al., 2013).

165

166 GEOLOGY OF THE CENTRAL COLORADO FRONT RANGE

Prominent Proterozoic structures of the central Colorado Front Range at the latitude of 167 168 Denver include at least three generations of folds and the Idaho Springs-Ralston shear zone (IRSZ; Figs. 2, 3). The IRSZ is a NE-trending Proterozoic shear zone that was previously 169 interpreted to extend from the Mount Evans Batholith, ~10 km SE of Idaho Springs, CO, to the 170 171 eastern margin of the Front Range, ~10 km NNW of Golden, CO (e.g. Kellogg et al., 2008). Madison Bzdok (née Lytle; Lytle, 2016) conducted detailed mapping along the shear zone and 172 concluded that it does not extend farther SW than Virginia Canyon Road, on the north side of 173 Idaho Springs (Figs. 2, 3). NE-trending shear zones of the central Colorado Front Range 174 including the IRSZ were initially interpreted as a suture zone that formed during ~1.8–1.6 Ga 175 176 accretion of small terranes and island arcs to the Proterozoic Wyoming Craton (Bowring and Karlstrom, 1990; McCoy et al., 2005; Abbott and Cook, 2012). This interpretation was largely 177 based on the presence of tectonic mélange at the St. Louis Lake shear zone, ~40 km NNW of the 178 179 IRSZ (McCoy, 2001). The Proterozoic shear zones were reactivated between ~ 1.45 Ga and ~ 1.38 Ga (McCoy, 2001). These shear zones may or may not have controlled the location of Paleogene 180 181 mineralization that generally but not exclusively occurred along the Colorado Mineral Belt 182 (Tweto and Sims, 1963; McCoy, 2001). The interpretation of the IRSZ as a Paleoproterozoic suture zone and its interpreted control on the location of the Colorado Mineral Belt has been 183 184 debated by Caine et al. (2010).

Based on detailed structural mapping, Lytle (2016; Fig. 3) demonstrated that the IRSZ is 185 not as extensive as previously interpreted. Additionally, a lack of pinch outs and offset of major 186 units, as well as similar deformation histories and metamorphic conditions on either side suggest 187 that the IRSZ did not form as a continental suture zone. Along the IRSZ, isoclinal F1 folds are 188 overprinted by F_2 folds (Lytle, 2016; Figs. 3, 4). F_2 folds NW of the IRSZ have subvertical NE-189 190 trending axial planes and plunge shallowly NE. SE of the IRSZ they also plunge shallowly NE, but axial planes dip shallowly ENE. Lytle (2016) developed a model where isoclinal F₁ folds are 191 192 folded by asymmetric NW-side-up meter-scale F_2 folds, followed by a several km-scale NEplunging, NW-dipping F₃ folds (Fig. 4). NW-side-down movement along the IRSZ may have 193 been a result of flexural slip on the NW steeply dipping limb of the NE-plunging, NW-dipping 194 F₃ fold. U–Pb laser ablation inductively coupled mass spectrometry monazite dates revealed 195 \sim 1.68 Ga and \sim 1.43 Ga events, both within and adjacent to the IRSZ. Relationships between 196 197 microstructures and monazite grains suggest F_1 folds formed at ~1.68 Ga and F_2 and F_3 folding and associated shearing along the IRSZ occurred at ~1.43 Ga. The relationship between shearing 198 and widespread folding at ~1.43 Ga suggests that Mesoproterozoic deformation, and the extent 199 of the Picuris orogeny, was much more extensive than solely reactivation along shear zones, as 200 201 previously interpreted (Shaw et al. 2001; McCoy et al., 2005).

Mapping and geochronology by Mahatma (2019), Powell (2020) and Shockley (2021) in the Mount Evans and Montezuma areas SE of Idaho Springs indicated that folding in those areas too was partly Paleoproterozoic and partly Mesoproterozoic. Therefore, pervasive folding as a result of the Picuris orogeny affected a large part of the central Colorado front Range. In addition, U–Pb detrital geochronology of a quartzite south of Mount Evans yielded a ~1.43 Ga detrital zircon population (Fig. 5; Mahatma, 2019), indicating that some of the sedimentary rocks

were deposited during the Picuris orogeny. The \sim 1.43 Ga zircon population is interpreted as 208 detrital, and not metamorphic or hydrothermal, because grains show concentric and oscillatory 209 zoning. In addition, some ~1.43 Ga grains show zoned cores with unzoned metamorphic 210 overgrowths that were too narrow to date, but that suggest igneous zircon growth prior to 211 deposition and metamorphism of the quartzite. This is discussed in detail by Mahatma (2019). 212 213 The quartzite and other stratified rocks were metamorphosed shortly after deposition of the guartzite as indicated by ~ 1.42 Ga and $\sim 1.39 - 1.33$ Ga metamorphic monazite in pelitic schist in 214 215 the area (Mahatma, 2019).

216

217 GEOLOGY OF THE WET MOUNTAINS

The Wet Mountains comprise a NW-trending fault-bounded block of primarily 218 Proterozoic rocks (Fig. 6). Metavolcanic and metasedimentary rocks are intruded by Paleo- and 219 Mesoproterozoic igneous rocks. Paleoproterozoic intrusive bodies include the foliated tonalite 220 and granodiorite of the ~1705 Ma Twin Mountain and Crampton Mountain plutons and the 221 weakly foliated to undeformed granodiorite of the ~1663 Ma Garell Peak pluton (Fig. 6; 222 Bickford et al., 1989). Mesoproterozoic intrusive rocks include the foliated 1442–1439 Ma Oak 223 224 Creek pluton (Figs. 6, 7), which ranges from quartz monzonite and monzogranite to leucogranite (Bickford et al., 1989; Siddoway et al., 2000; Hernández-Montenegro et al., 2019); the unfoliated 225 226 1460 Ma West McCoy Gulch leucogranite pluton (Fig. 6; Cullers et al., 1993); and the 1371– 227 1362 Ma San Isabel pluton (Fig. 6), which is a monzogranite to syenogranite that is variably deformed at exposed margins and generally undeformed within the main body of the pluton 228 229 (Cullers et al., 1992; Jones et al., 2010).

230	The southern part of the Wet Mountains contains extensive exposures of migmatite
231	gneiss (Figs. 6, 8). The central and southern Wet Mountains host intrusive bodies, including the
232	Oak Creek and San Isabel plutons, and an extensive network of sill and dike intrusions (Jones et
233	al., 2010; Levine et al., 2013). In the Greenhorn Mountain area south and west of the main body
234	of the San Isabel pluton, host rock-intrusion relationships are commonly unclear, because of the
235	extent of migmatization of host rock gneisses and because of the extensive network of
236	centimeter- to meter-scale felsic intrusions (Fig. 8; Jones et al., 2010; Levine et al., 2013). The
237	San Isabel pluton contains magmatic epidote (Cullers et al., 1992), suggesting mid-crustal
238	emplacement depths. Migmatite gneisses at the contact with the Oak Creek pluton record peak
239	metamorphic conditions of ~750 °C and ~7 kbar (Hernández-Montenegro et al., 2019).
240	Mesoproterozoic deformation, metamorphism, and igneous rock emplacement occurred
241	between \sim 1.43 Ga and 1.36 Ga and these processes were broadly coeval throughout the range
242	(Siddoway et al., 2000; Jones et al., 2010). In the northern Wet Mountains, Mesoproterozoic
243	deformation overprinted two generations of Paleoproterozoic fabrics, and strain was
244	concentrated in shear zones (Siddoway et al., 2000). In the southern Wet Mountains, researchers
245	interpret that extensive partial melt generation lead to the formation of melt networks that
246	accommodated lower crustal flow in response to regional compressive stresses (Jones et al.,
247	2010; Levine et al., 2013; Searle, 2013; Levine and Rahl, 2021).
248	The northern part of the Wet Mountains is well known for thorium and other rare earth
249	element (REE) mineralization associated with Cambrian-Ordovician alkaline intrusions,
250	including the McClure Mountain, Gem Park, and Democrat Creek complexes (Fig. 6). These
251	complexes are sequentially cross-cut by lamprophyre, syenite, and carbonatite dikes, and
252	mineralized quartz-barite-thorite veins (Armbrustmacher, 1988; Magnin et al., 2021). REE

mineralization occurs predominately within carbonatite dikes, quartz-barite-thorite veins, and
hydrothermally altered red syenite dikes (Armbrustmacher, 1988). Alkaline magmatic rocks in
the Wet Mountains may have been derived from a mantle melt, likely related to failed
intracontinental rifting during the Cambrian-Ordovician (Olson et al., 1977; Larson et al., 1985;
McMillan and McLemore, 2004; Magnin et al., 2021).

258

259

59 FIELD TRIP DESCRIPTION AND STOPS

We will first discuss how the Picuris orogeny reactivated or overprinted earlier structures, 260 and perhaps controlled the location of structures associated with Cambrian rifting, the 261 Cretaceous- Paleogene Laramide orogeny and subsequent Rio Grande Rift, and associated 262 mineralization. Stops 1–7 will give an overview of geology of the central Colorado Front Range, 263 including rocks and deformation associated with the Paleoproterozoic Yavapai/Mazatzal 264 orogenies and the Mesoproterozoic Picuris orogeny, and some of the Cretaceous- Paleogene 265 structures and mineralization associated with the Laramide orogeny. Stops 8 and 9 will also 266 focus on deformation and metamorphism associated with the Paleoproterozoic Yavapai/Mazatzal 267 orogenies and the Mesoproterozoic Picuris orogeny, and with Cambrian REE-bearing magmatic 268 269 rocks as a result of Cambrian rifting.

270

271 DAY 1. CENTRAL COLORADO FRONT RANGE – INTRODUCTION TO THE

272 PROTEROZOIC YAVAPAI/MAZATZAL AND PICURIS OROGENIES

273

274 Leave conference center 7.00 am

Drive 32 miles, 50 minutes (could make 10 minute restroom break along the way, at gas stationbefore field stop)

277

278 Stop 1. Idaho Springs-Ralston shear zone 8.00-9.30 am; includes introduction talk

279 Location: 39°47′11″ N, 105°27′57″ W; 2363m elevation

(coordinates at parking location; outcrops are across the road along the NW side to the NW andthe SE)

282

283 The outcrop shows a variety of schist and gneiss with subvertical NE-trending foliation

and steep lineation (Fig. 9). The shear sense is predominantly NW-side-down and locally NW-

side up. One biotite-muscovite schist yielded ~1.67 Ga, ~1.63 Ga and ~1.48 Ga in-situ U-Pb LA-

ICPMS monazite ages, and another yielded ~1.62 Ga and ~1.44 Ga ages (Lytle, 2016). The ages

are consistent with other ages of deformation along the Idaho Springs-Ralston shear zone, and of

folds away from the shear zone (Lytle, 2016).

289 Questions for discussion: What are the shear direction and shear sense? Was this shear zone a
290 suture zone or a smaller scale shear zone? How is it related to folding in the area? How would
291 one find out?

292

Drive 5 miles, 8 minutes (could make 10 minute restroom break along the way, at gas station
before field stop; same as before)

295

296 Stop 2. Mesoproterozoic pegmatite along top-to-the-south shear 9.45-10.15 am

297 Location: 39°44′47″ N, 105°23′51″ W; 2108m elevation

298 (coordinates at outcrop; park ~50 m to the north along the east side of the road in the pull-out299 and walk south)

300

300	
301	Southeast of the Idaho Springs-Ralston shear zone there are tens of meter-scale shear structures
302	displaying top-to-the-south ductile-brittle shear along shallowly-north-dipping shear planes.
303	These may be the latest structures associated with the Picuris orogeny, after folding, or they may
304	represent late flexural slip on the SE limb of a NW-dipping anticline during folding associated
305	with the Picuris orogeny. The pegmatite along the shear plane at this stop (Fig. 10A-D) yielded a
306	weighted average of 207 Pb/ 206 Pb LA-ICPMS ages of 1441 ± 83 (N=4, MSWD = 2.3), with
307	inheritance of primarily 1771 \pm 24 Ma grains (N=9, MSWD = 0.55) and as old as 1913 \pm 67 Ma
308	(Fig. 10E).
309	
310	Questions for discussion: What is the significance of these shears? Are they related to folding in
311	the area, and to the Idaho Springs-Ralston shear zone on the other 'limb' of the large-scale NW-
312	dipping NE-plunging synform? How would one find out?
313	
314	Drive 8.5 miles, 15 minutes (restroom on site at the Edgar Mine)
315	
316	Stop 3. Edgar Experimental Mine 10.30 am-12.30 pm
317	Location: 39°44′50″ N, 105°31′31″ W; 2399m elevation
318	(coordinates at outcrop; park \sim 50 m to the north along the east side of the road in the pull-out
319	and walk south)
320	

The Edgar mine, the Colorado School of Mines Experimental Mine (Fig. 11), stems from the "Rush to the Rockies" mining period. In the 1870s, it produced high-grade silver, gold, lead and copper. It is now part of the Colorado School of Mines and an educational laboratory for those learning to find, develop, and process natural resources. In addition to educating Colorado School of Mines' Mining Engineering students, it provides educational tours for the public and school groups.

The oldest rocks are Paleoproterozoic gneiss and schist (Fig. 11C) that are along-strike 327 with and arguably part of the Idaho Springs-Ralston shear zone. However, the mylonite zone that 328 329 is characteristic of the Idaho Springs-Ralston shear zone ends less than 700 m to the NE, where the last outcrops can be seen on the Virginia Canyon 'Oh-My-God' (for its twists and turns, 330 which are now much less scary than in the past) Road. In Idaho Springs, a zone of NE-trending 331 foliation exists associated with folding at upper amphibolite facies, but no mylonite zone. This 332 led to the conclusion that the Idaho Springs-Ralston shear zone is not a suture zone, but an effect 333 334 of regional folding (Lytle, 2019; Fig. 4).

Cretaceous-Paleogene quartz veins and mineralization in the mine (Fig. 11D) are close to parallel in and around the Edgar Mine, but on careful inspection they can be seen to crosscut at very low angle.

338

Question for discussion: Is Cretaceous- Paleogene mineralization, magmatism, faulting and
 veining controlled by Proterozoic structures?

341

342 Lunch 12.30-1.00 pm (can make this shorter probably)

343 Pizza at BeauJo's in Idaho Springs.

3	4	4
-		

345	Question for discussion: What is better: thin-crust pizza or Colorado style mountain pie?
346	
347	Drive 2.5 miles, 7 minutes
348	
349	Stop 4. Mega sigma-clast and other shear structures 1.15-1.30 pm
350	Location: 39°44'39" N, 105°29'16" W; 2281m elevation
351	
352	Look east on the cliff across the road to find a mega sigma-clast (Fig. 12A) and other large-scale
353	shear structures (Fig. 12B). The shear sense is top to the south, as in stop 2. Structures like this
354	exist throughout this area SE of the Idaho Springs-Ralston shear zone (and elsewhere?) and give
355	something to look at when stuck in ski traffic.
356	
357	Question for discussion: Continue discussion of stop 2. Also, what causes such large-scale
358	structures to form? Is it because of rheology contrast, or because of brittle shear localization, or
359	something else? Where else have you seen such large-scale shear structures?
360	
361	Drive 7 miles, 12 minutes
362	
363	Stop 5. Sheared Mount Evans batholith 1.45-2.30 pm (probably include)
364	Location: 39°41'38" N, 105°37'02" W; 2689m elevation
365	

366	This outcrop looks like steeply WNW-dipping sheared rock with NW-side-up movement (Fig.
367	13) and may have been interpreted as the Idaho Springs-Ralston Shear Zone in the past.
368	However, it is too northerly-trending for that, and foliations and shear zones within \sim 500m to the
369	SW, S and SE, and on a separate outcrop \sim 4 km to the SW along West Chicago Creek Road have
370	various orientations. Shear zones are only local here and their significance is not clear and
371	probably minor.
372	
373	Questions for discussion: Why is the Idaho Springs-Ralston Shear Zone here? Does it reactivate
374	earlier NE-trending structures? How does it relate to other NE-trending shear zones of Colorado,
375	some of which are interpreted as suture zones?
376	
377	Stop 6. Weakly foliated Mount Evans batholith 2.40-3.10 pm
378	Location: 39°42'13" N, 105°36'29" W; 2612m elevation
379	
380	Here, the Mount Evans batholith looks much less deformed than the previous outcrop (Fig. 14A),
381	and has a weak foliation that is more typical for the Mount Evans batholith. The batholith was
382	initially interpreted as having primarily flow foliations (Aleinikoff et al., 1993), but Powell
383	(2020) noted that most foliations dip moderately NW (Fig. 14B) and are probably tectonic. This
384	may imply the latest shortening direction of the Picuris orogeny was NW, while the top-to-the-
385	south ductile brittle structures of stops 3 and 4 imply that is was south-directed. Interestingly,
386	other ~1.4 Ga plutons and other deformed rocks also show evidence for NW-directed shortening
387	in Colorado (Gonzales et al., 1996; Jones et al., 2010; Shah and Bell, 2012), New Mexico
388	(Grambling and Codding, 1982) and Arizona (Doe and Daniel, 2019), while in the Picuris

389	mountains of New Mexico (Daniel et al., 2013) and the Montezuma mining district of Colorado
390	(Shockley, 2021) it is north-directed.
391	
392	Questions for discussion: What was the latest shortening direction of the Picuris orogeny? What
393	might it have been earlier? How does it fit with shortening in New Mexico and Arizona and with
394	shear zone reactivation?
395	
396	Stop 7. Folded migmatitic biotite gneiss 3.20-3.50 pm
397	Location: 39°42'50" N, 105°34'48" W; 2483m elevation
398	
399	Migmatitic biotite gneiss is isoclinally folded, and subsequently refolded by moderately NE-
400	plunging open to close (NW-side-up?) F2 folds (Fig. 15). The lineation is steep and pre-or syn-
401	F2 folding. This location is along strike with the Idaho Springs-Ralston Shear Zone of stop 1, but
402	here it has died out.
403	
404	Questions for discussion: Why does the Idaho Springs-Ralston Shear Zone die out toward the
405	SW? Is it related to folding (flexural flow)?
406	
407	Drive 150 miles, 2.5-3.0 hours
408	Stay overnight in Walsenburg, CO
409	
410	DAY 2. WET MOUNTAINS – PROTEROZOIC DEFORMATION AND
411	METAMORPHISM AND CAMBRIAN RIFTING

412 Drive from Best Western Rambler in Walsenburg, depart 7:15am

413 Drive ~38 miles, 55-75 min

414

415 Stop 8. Garnet biotite migmatite gneiss

416 Parking Location: 37°53'30.73"N, 105° 6'23.85"W; 2670m elevation

417 Walk ~0.9 miles (heading up in elevation) along the Cisneros Trail

418

This section of the Cisneros Trail contains semi-continuous outcrop exposure of biotite 419 420 migmatite gneiss, garnet biotite migmatite gneiss, and amphibolite (Fig. 9). We will walk the first mile of the trail. The Cisneros Trail is a ~10-mile path from this stop location to the San 421 Isabel recreation area. The trail continues past this field trip stop through exposures of granitic 422 sill and dike intrusions. The northern section of the trail passes through the main body of the San 423 Isabel pluton, but exposure is poor. Stop 8 will highlight migmatite textures and mineralogy (Fig. 424 9). These migmatite outcrops are characteristic of the southern Wet Mountains, where host rock-425 intrusion relationships are cryptic or obscured. 426

427

428 Questions for discussion: What can we interpret from migmatite textures in outcrop about the 429 structural or temporal relationship between partial melt formation and felsic intrusions in the 430 southern Wet Mountains? What might different structural interpretations imply about tectonic 431 models of southwestern North America in the Proterozoic?

432

433 Drive from Cisneros trailhead to downtown Westcliffe, CO

434 Drive 48 miles, \sim 1 hour, 15 min

121	5
-----	---

436 Stop for lunch in Westcliffe

437

438 Drive from Westcliffe along Oak Creek Grade (County Road 143) to East Bear Trailhead pull439 out
440 Drive 20 miles, ~40 minutes
441
442 Stop 9. Oak Creek pluton

443 Parking location: 38° 18' 19.764" N, 105° 15' 16.83" W; 2255m elevation

444

We will examine a section of the Oak Creek pluton exposed along the road (Fig. 8). The Oak 445 Creek is a foliated Mesoproterozoic pluton with a crystallization age of 1442-1439 Ma (Bickford 446 et al., 1989; Cullers et al., 1993; Jones et al., 2010). Its fabrics are generally concordant with host 447 rock fabrics (Siddoway et al., 2000; Jones et al., 2010). Adjacent host rocks include felsic gneiss, 448 amphibolite, and migmatite gneiss (Siddoway et al., 2000; Jones et al., 2010; Levine et al., 2013; 449 Hernández-Montenegro et al., 2019). The Oak Creek ranges in composition from quartz-450 monzonite to monzogranite to leucogranite (Bickford et al., 1989; Cullers et al., 1993) and is also 451 ferroan in composition (Cullers et al., 1993; Frost et al., 2001; Hernández -Montenegro et al., 452 2019). 453 454 Questions for discussion: How can we reconcile the structural evidence of syntectonic 455

456 emplacement of this Mesoproterozoic pluton with the ferroan geochemical character of the

457 pluton?

458

480

459 **DISCUSSION**

We conclude this field guide with some thoughts for discussion. Previously, 460 Mesoproterozoic orogenic and other Earth processes have been interpreted as different from 461 those in the Paleoproterozoic, and Neoproterozoic/Phanerozoic (e.g., Bradley et al., 2011; Brown 462 463 et al., 2020; Spencer et al., 2021; Liu et al., 2022). Here, we give a summary of some of the observations and interpretations. Bradley et al. (2011) compiled various datasets and 464 demonstrated various minima, including the number of passive margins, detrital zircons, 465 greenstone-belt collisions, eclogites, granulites, carbonatites, and orogenic gold. Perhaps the 466 quiescence explains the "Boring Billion" of Holland (2006), which was based on a period of 467 little variation in atmospheric oxygen levels. Brown et al. (2020) observed that T/P ratios of 468 metamorphic rocks were higher in the Mesoproterozoic than at any other time in the Earth's 469 history. High T/P conditions were accompanied by high 176 Hf/ 177 Hf ratios and low δ^{18} O values in 470 zircon, indicating more juvenile crust in the Mesoproterozoic (Brown et al., 2020). A high 471 volume of massif-type anorthosites also indicate high T/P conditions and zircon Eu/Eu* ratios 472 indicate thin crust (Spencer et al., 2021). Low T/P ratios in metamorphic rocks are characteristic 473 474 for plate boundaries, (Liu et al., 2022), suggesting that there were fewer plate boundaries in the Mesoproterozoic than before and after that time. Low T/P rocks are especially characteristic for 475 476 blueschist and eclogite facies rocks and and associated with subduction. While present in the 477 Paleoproterozoic, these became especially abundant in the Neoproterozoic when there was a transition to modern plate tectonic processes (Brown et al., 2020; Liu et al., 2022). 478 479 Paleogeographic reconstructions show that Paleoproterozoic supercontinent may never

have broken up fully and transitioned into Rodinia towards the end of the Mesoproterozoic

without too much plate movement (e.g. Pisarevsky et al., 2014, Martin et al. 2020). Along the SE
margin of Laurentia, there may have been subduction during most of the Mesoproterozoic, and
perhaps slab rollback, associated juvenile crust formation, and possible accretion of juvenile
crust (cf. Brown et al., 2020; Liu et al., 2022; Daniel et al., 2022a). Plate tectonic processes may
have slowed down during this period, or alternatively, the Mesoproterozoic may have been
characterized by hot, thin, and low orogens (Spencer et al., 2021).

These observations and interpretations may explain why the Picuris orogeny is so difficult to recognize and was largely overlooked until the past decade. It is still difficult to envision what the entire orogenic belt might have looked like, including locations of the arc, fore-arc and back-arc, and other components of the orogenic belt. We will discuss these issues during the trip, and hope we will have inspiring discussion about the intricacies of the Mesoproterozoic.

493

494 ACKNOWLEDGMENTS

We thank current and past Colorado School of Mines graduate students Ben Magnin,
Asha Mahatma, Logan Powell and Dustin Shockley for discussion and/or contribution. We much
benefited from discussion with Jonathan Caine, Mike Doe and John Ridley. Chris Holm-Denoma
and Zhaoshan Chang carried out U-Pb LA-ICPMS geochronology.

499

500 **REFERENCES CITED**

Abbott, L., and Cook, E., 2012, Geology Underfoot along Colorado's Front Range: Montana,
 Mountain Press Publishing Company, 93 p.

ociety
5
ric
Creek
ogy of
rozoic
n the
gical
ical
5.1.
States
letin, v.

526	Grambling, J.A., and Tewksbury, B.J., eds., Proterozoic geology of the southern Rocky
527	Mountains: Geological Society of America Special Paper 235, p. 33-48.
528	Bollen, E.M., Stowell, H.H., Aronoff, R.F., Stotter, S.V., Daniel, C.G., McFarlane, C.R.M.,
529	Vervoort, J.D., 2022, Reconciling garnet Lu-Hf and Sm-Nd and monazite U-Pb ages for a
530	prolonged metamorphic event, northern New Mexico: Journal of Petrology, v. 63,
531	doi.org/10.1093/petrology/egac031
532	Bowring, S.A., and Karlstrom, K.E., 1990, Growth, stabilization, and reactivation of Proterozoic
533	lithosphere in the southwestern United States: Geology, v. 18, p. 1203–1206,
534	doi:10.1130/0091-7613(1990)018<1203:GSAROP>2.3.CO;2.
535	Bradley D.C., 2008, Passive margins through Earth history: Earth-Science Review, v. 91, p. 1-
536	26.
537	Brown, M., Johnson, T., Gardiner, N.J., 2020, Plate tectonics and the Archean Earth: Annual
538	Review of Earth and Planetary Sciences, v. 48, p. 291-320.
539	Bryant, Bruce, Miller, R.D., and Scott, G.R., 1973, Geologic map of the Indian Hills quadrangle,
540	Jefferson County, Colorado: U.S. Geological Survey, scale 1:24,000.
541	Caine, J.S., and Minor S.A., 2009. Structural and geochemical characteristics of faulted
542	sediments and inferences on the role of water in deformation, Rio Grande Rift, New
543	Mexico. Geological Society of America Bulletin 121, 1325–1340.
544	Caine, J.S., Ridley, J., and Wessel, Z.R., 2010, To reactivate or not to reactivate - nature and
545	varied behavior of structural inheritance in the Proterozoic basement of the eastern
546	Colorado Mineral Belt over 1.7 billion years of earth history: Geological Society of
547	America Field Guide, v. 18, p. 119-140, doi: 10.1130/2010.0018(06).

- Chapin, C.E., 2012, Origin of the Colorado Mineral Belt: Geosphere, v. 8, p. 28–43,
 doi:10.1130/GES00694.1.
- ⁵⁵⁰ Chapin, C.E., and Cather, S.M., 1994, Tectonic setting of the axial basins of the northern and

central Rio Grande rift, in Keller, G.R., and Cather, S.M., eds., Basins of the Rio Grande
Rift: Structure, stratigraphy, and tectonic setting: Geological Society of America Special
Paper 291, p. 5, 25, doi:10, 1130 /SPE291-p5

- ⁵⁵³ Paper 291, p. 5—25, doi:10.1130/SPE291-p5.
- ⁵⁵⁴ Condie, K.C., 1986, Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in
 ⁵⁵⁵ the southwestern United States: Journal of Geology, v. 94, p. 845–864.
- ⁵⁵⁶ Cullers, R.L., Griffin, T., Bickford, M.E., and Anderson, J.L., 1992, Origin and chemical
- evolution of the 1360 Ma San Isabel Batholith, Wet Mountains, Colorado: A mid-crustal
 granite of anorogenic affi nities: Geological Society of America Bulletin, v. 104, p. 316–
 328, doi: 10.1130/0016-7606(1992)104<0316:OACEOT>2.3.CO;2.
- Cullers, R. L., Stone, J., Anderson, J. L., Sassarini, B., and Bickford, M. E., 1993, Petrogenesis
 of Mesoproterozoic Oak Creek and West McCoy Gulch plutons, Colorado: An example
 of cumulate unmixing of a mid-crustal, two mica granite of anorogenic affinity:
- ⁵⁶³ Precambrian Research, v. 62, p. 139–169.
- Daniel, C.G., Pfeifer, L.S., Jones, J.V. III, and McFarlane, C.M., 2013, Detrital zircon evidence
 for non-Laurentian provenance, Mesoproterozoic (ca. 1490-1450 Ma) deposition and
 orogenesis in a reconstructed orogenic belt, northern New Mexico, USA: Defining the
 Picuris orogeny: Geological Society of America Bulletin y, 125, p. 9-10, p. 1423-1441
- Picuris orogeny: Geological Society of America Bulletin, v. 125, n. 9-10, p. 1423-1441.
- ⁵⁶⁸ Daniel, C.G., Aronoff, R., Indares, A.D., and Jones, J.V. III, 2022a, Laurentia in transition
- ⁵⁶⁹ during the Mesoproterozoic: observations and speculation on the ca. 1500-1340 Ma
- tectonic evolution of the south Laurentian margin, in Whitmeyer, S.J., Williams, M.L.,

571	Kellett, D.A., and Tikoff, B., eds., Laurentia: Turning Points in the Evolution of a
572	Continent: Geological Society of America Memoir 220,
573	https://doi.org/10.1130/2022.1220(08)
574	Daniel, C.G., Indares, A., Medaris, L.G., Jr., Aronoff, R., Malone, D., and Schwartz, J., 2022b,
575	Linking the Pinware, Baraboo, and Picuris orogenies: Recognition of a trans-Laurentian
576	ca. 1520–1350 Ma orogenic belt, in Whitmeyer, S.J., Williams, M.L., Kellett, D.A., and
577	Tikoff, B., eds., Laurentia: Turning Points in the Evolution of a Continent: Geological
578	Society of America Memoir 220, https://doi.org/10.1130/2022.1220(11).
579	Daniel, C.G., and Pyle, J.M., 2006, Monazite-Xenotime thermochronometry and Al ₂ SiO ₅
580	reaction textures in the Picuris Range, northern New Mexico, USA: new evidence for a
581	1450-1400 Ma orogenic event: Journal of Petrology, v. 47, n. 1, p. 97-118.
582	Doe, M.F., and Daniel, G.G., 2019, Evidence for Mesoproterozoic ca. 1470-1444 Ma regional
583	deformation of the Mazatzal Group and equivalent rocks in the type area of the Mazatzal
584	orogeny, Tonto Basin, Arizona, in Pearthree, P.A., ed., Geologic excursions in
585	southwestern North America: Geological Society of America Field Guide 55, p. 1–36,
586	doi.org/10.1130/2019.0055(10).
587	Doe, M.F., Jones, J.V. III, Karlstrom, K.E., Thrane, K., Frei, D., Gehrels, G., Pecha, M., 2012,
588	Basin formation near the end of the 1.60-1.45 Ga tectonic gap in southern Laurentia:
589	Mesoproterozoic Hess Canyon Group of Arizona and implications for ca. 1.5 Ga super-
590	continent configurations: Lithosphere, v. 4, n. 1, p. 77-88.
591	Doe, M.F., Jones, J.V. III, Karlstrom, K.E, Dixon, B., Gehrels, G.E., 2013, Using detrital zircon
592	ages and Hf isotopes to identify ca. 1.48-1.45 Ga sedimentary basins and fingerprint

593	potential sources of exotic 1.6-1.5 Ga grains in southwestern Laurentia: Precambrian
594	Research, v. 231, p. 409-421. http://dx.doi.org/10.1016/j.precamres.2013.03.002.
595	du Bray, E.A., Holm-Denoma, C.S., Lund, K., and Premo, W.R., 2018, Review of the
596	Geochemistry and Metallogeny of Approximately 1.4 Ga Granitoid Intrusions of the
597	Conterminous United States: U.S. Geological Survey Scientific Investigations Report
598	2017-5111, 34 p., https://doi.org/10.3133/sir20175111.
599	English, J. M., Johnston, S. T., and Wang, K., 2003, Thermal modelling of the Laramide
600	orogeny: Testing the flat-slab subduction hypothesis: Earth and Planetary Science
601	Letters, v. 214, p. 619–632.,
602	Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001, A
603	geochemical classification for granitic rocks: Journal of Petrology, v. 42, p. 2033–2048.
604	Frost, C.D., and Frost, B.R., 2022, Petrologic constraints on the origin of Proterozoic ferroan
605	granites of the Laurentian margin, in Whitmeyer, S.J., Williams, M.L., Kellett, D.A., and
606	Tikoff, B., eds., Laurentia: Turning Points in the Evolution of a Continent: Geological
607	Society of America Memoir 220, https://doi.org/10.1130/2022.1220(10).
608	Gable, 2000, Geologic map of the Proterozoic rocks of the central Front Range, Colorado: U.S.
609	Geological Survey, IMAP 2605, scale 1:100,000.
610	Gonzales, D.A., Karlstrom, K.E., and Siek, G., 1996, Syncontractional crustal anatexis and
611	deformation during emplacement of the 1435 Ma Electra Lake gabbro, Needle
612	Mountains, Colorado: The Journal of Geology, v. 104, p. 215–223, doi: 10.1086
613	/629815.

- Goodge, J.W., and Vervoort, J.D., 2006, Origin of Mesoproterozoic A-type granites in Laurentia:
 Hf isotope evidence: Earth and Planetary Science Letters, v. 243, p. 711–731,
 https://doi.org/10.1016/j.epsl.2006.01.040.
- Gower, C.F., and Krogh, T.E., 2002, A U-Pb geochronological review of the Proterozoic history
- of the eastern Grenville Province: Canadian Journal of Earth Sciences, v. 39, p. 795–829,
 https://doi.org/10.1139/e01-090.
- 620 Groulier, P.-A., Indares, A.D., Dunning, G., Mouhksil, A., 2020, Andean style 1.50–1.35 Ga arc
- dynamics in the southeastern Laurentian margin: the rifting and reassembly of Quebecia:
 Terra Nova, p. 1-8, doi:10.1111/ter.12482.
- 623 Guitreau, M., Mukasa, S.B., Blichert-Tift, J., and Fahnestock, M.F., 2016, Pikes Peak batholith
- 624 (Colorado, USA) revisited: A SIMS and LA-ICP-MS study of zircon U–Pb ages
- 625 combined with solution Hf isotopic compositions: Precambrian Research, v. 280, p. 179626 194.
- 627 Hernández-Montenegro, D., Andronicos, C.L., Zuluaga, C.A., and Aronoff, R.A., 2019, Effects
- of melt loss, melt retention, and protolith composition on differentiation of anatectic
- 629 metapelites: A case study of the Wet Mountains, Colorado: Lithos, v. 344–345, p. 425–

630 439, https://doi.org/10.1016/jlithos.2019.06.032.

- Holland, H. D., 2006, The oxygenation of the atmosphere and oceans, Philosophical
- Transactions of the Royal Society B: Biological Sciences, v. 361(1470), p. 903–915.
- 633 https://doi.org/10.1098/rstb.2006.1838
- Holland, M.E., Grambling, T.A., Karlstrom, K.E., Jones III, J.V, Nagotko, K.N., Daniel, C.G.,
- 635 2020, Geochronologic and Hf-isotope framework of Proterozoic rocks from central New

636	Mexico, USA: Formation of the Mazatzal crustal province in an extended continental
637	margin arc: Precambrian Research, v. 347, doi:10.1016/j.precamres.2020.105820.
638	Jessup, M.J., Jones, J.V., Karlstrom, K.E., Williams, M.L., Connelly, J.N., and Heizler, M.T.,
639	2006, Three Proterozoic orogenic episodes and an intervening exhumation evet in the
640	Black Canyon of the Gunnison region, Colorado: The Journal of Geology, v. 114, p. 555-
641	576, doi:10.1086/506160.
642	Jones, J.V., III, and Connelly, J.N., 2006, Proterozoic tectonic evolution of the Sangre de Cristo
643	Mountains, southern Colorado, U.S.A.: Rocky Mountain Geology, v. 41, p. 79–116, doi:
644	10.2113/gsrocky.41.2.79.
645	Jones, J.V., III, Connelly, J.N., Karlstrom, K.E., Williams, M.L., and Doe, M.F., 2009, Age,
646	provenance, and tectonic setting of Paleoproterozoic quartzite successions in the
647	southwestern United States: Geological Society of America Bulletin, v. 121, p. 247-264.
648	Jones, J.V., III, Siddoway, C.S., and Connelly, J.N., 2010, Characteristics and implications of ca.
649	1.4 Ga deformation across a Proterozoic mid-crustal section, Wet Mountains, Colorado,
650	USA: Lithosphere, v. 2, p. 119–135, https://doi.org/10.1130/L78.1.
651	Jones, J.V., III, Daniel, C.G., Frei, D., and Thrane, K., 2011, Revised regional correlations and
652	tectonic implications of Paleoproterozoic and Mesoproterozoic metasedimentary rocks in
653	northern New Mexico, USA: New findings from detrital zircon studies of the Hondo
654	Group, Vadito Group, and Marqueñas Formation: Geosphere, v. 7, no. 4, p. 974–991,
655	https://doi.org/10.1130/GES00614.1.
656	Karlstrom, K.E., and Bowring, S.A., 1988, Early Proterozoic assembly of tectonostratigraphic
657	terranes in southwestern North America: The Journal of Geology, v. 96, p. 561-576.

658	Karlstrom, K.E., and Humphreys, G., 1998, Influence of Proterozoic accretionary boundaries in
659	the tectonic evolution of western North America: Interaction of cratonic grain and mantle
660	modification events: Rocky Mountain Geology, v. 33, p. 161-179.
661	Kellog, K.S., Shroba, R.R., Bryant, B., and Premo, W.R., 2008, Geologic map of the Denver
662	west 30' x 60' quadrangle, north-central Colorado: U.S. Geological Survey, scale
663	1:100,000.
664	Kirby, E., Karlstrom, K.E., Andronicos, C.L., and Dallmeyer, R.D., 1995, Tectonic setting of the
665	Sandia pluton: An orogenic 1.4 Ga granite in New Mexico: Tectonics, v. 14, p. 185–201,
666	https://doi.org/10.1029/94TC02699.
667	Kopera, J., 2003, Monazite Geochronology of the Ortega Quartzite: Documenting the Extent of
668	1.4 Ga Tectonism in Northern New Mexico and across the Orogen [M.S. thesis]:
669	Amherst, University of Massachusetts, 130 p.
670	Larson, E.E., Patterson, P.E., Curtis, G., Drake, K., Mutschler, F.E., 1985, Petrologic,
671	paleomagnetic, and structural evidence of a Paleozoic rift system in Oklahoma, New
672	Mexico, Colorado, and Utah: Geological Society of America Bulletin, v. 96, n. 11, p.
673	1364-1372.
674	Levine, J.S.F. and Rahl, J.M., 2021, Subgrain Boundaries as Sites of Melt Generation and
675	Pathways for Melt Flow: Implications for Rheology From Combined Chemical and
676	Quantitative Orientation Analysis: Journal of Geophysical Research: Solid Earth, v. 126,
677	no. 6, p. e2020JB020487.
678	Levine, J.S., Mosher, S., Siddoway, C.S., 2013, Relationship between syndeformational partial
679	melting and crustal-scale magmatism and tectonism across the Wet Mountains, central
680	Colorado: Lithosphere v. 5, p. 456–476.

681	Liu, Y., Mitchell, R.N., Brown, M., Johnson, T.E., and Pisarevsky, S., 2022, Linking
682	metamorphism and plate boundaries over the past 2 billion years: Geology,
683	https://doi.org/10.1130/G49637.1
684	Lytle, M., 2016, The Proterozoic history of the Idaho Springs-Ralston shear zone: Evidence for
685	widespread ca. 1.4 Ga orogenic event in Central Colorado [M.Sc. thesis]: Golden,
686	Colorado School of Mines, 89 p.
687	Magnin, B., Kuiper, Y.D., Barkmann, P.E., 2021. Preliminary structural analysis of alkaline
688	dikes and mineralized veins in the Wet Mountains, south-central Colorado: connecting
689	rare earth element mineralization to Cambrian rifting. GSA Abstracts with Programs. Vol
690	53, No. 6., doi: 10.1130/abs/2021AM-367101
691	Mahan, K.H., Allaz, J.A., Baird, G.B., and Kelly, N.M, 2013, Proterozoic metamorphism and
692	deformation in the northern Colorado Front Range, in Abbott, L.D., and Hancock, G.S.,

693 eds., Classic Concepts and New Directions: Exploring 125 Years of GSA Discoveries in

694the Rocky Mountain Region: Geological Society of America Field Guide, v. 33, p. 185-

695 204, doi:10.1130/2013.0033(06).

Mahatma, A., 2019, The Proterozoic history of the southern half of the Mount Evans 7.5 minute
quadrangle: evidence for ca. 1.4 Ga orogenic event in the central Front Range, Colorado:
MS Thesis, Colorado School of Mines, Golden CO, 88 p.

⁶⁹⁹ Mako, C.A., Williams, M.L., Karlstrom, K.E., Doe, M.F., Powicki, D., Holland, M.E., Gehrels,

G., and Pecha, M., 2015, Polyphase Proterozoic deformation in the Four Peaks area,

central Arizona, and relevance for the Mazatzal orogeny: Geosphere, v. 11, no. 6, p.

702 1975–1995, doi:10.1130/GES01196.1.

703	Martin, E. L., Spencer, C. J., Collins, W. J., Thomas, R. J., Macey, P. H., & Roberts, N. M. W.,
704	2020, The core of Rodinia formed by the juxtaposition of opposed retreating and
705	advancing accretionary orogens: Earth-Science Reviews, v. 211, 103413.
706	https://doi.org/10.1016/j.earscirev.2020.103413
707	McCoy, A.M., 2001, The Proterozoic ancestry of the Colorado Mineral Belt: ca. 1.4 Ga shear
708	zone system in central Colorado [M.Sc. thesis]: Albuquerque, University of New Mexico,
709	160 p.
710	McCoy, A.M., Karlstrom, K.E., Shaw, C.A., and Williams, M.L., 2005, The Proterozoic ancestry
711	of the Colorado Mineral Belt: 1.4 Ga shear zone system in central Colorado, in
712	Karlstrom, K.E., and Keller, G.R., eds., The Rocky Mountain Region: An Evolving
713	Lithosphere: American Geophysical Union Geophysical Monograph 154, p. 71–90,
714	https://doi .org/10.1029/154GM06.
715	McMillan, N.J., and McLemore, V.T., 2004, Cambrian–Ordovician magmatism and extension in
716	New Mexico and Colorado: New Mexico Bureau of Geology & Mineral Resources
717	Bulletin 160, p. 1-11.
718	Medaris, L.G. Jr., Singer, B.S., Jicha, B.R., Malone, D.H., Schwartz, J.J., Stewart, E.K., Van
719	Lankvelt, A., Williams, M.L., and Reiners, P.W., 2021, Early Mesoproterozoic evolution
720	of midcontinental Laurentia: Defining the geon 14 Baraboo orogeny: Geoscience
721	Frontiers, v. 12, Article 101174, doi:10.1016/j.gsf.2021.101174.
722	Minor, S.A., Hudson, M.R., Caine, J.S., Thompson, R.A., 2013, Oblique transfer of
723	extensional strain between basins of the middle Rio Grande rift, New Mexico: fault
724	kinematic and paleostress constraints: Geological Society of America Special Paper 494,
725	345–382.

726	Nyman, M.W., Karlstrom, K.E., Kirby, E., and Graubard, C.M., 1994, Mesoproterozoic
727	contractional orogeny in western North America: Evidence from ca. 1.4 Ga plutons:
728	Geology, v. 22, p. 901–904, <u>https://doi.org</u> /10.1130/0091-
729	7613(1994)022<0901:MCOIWN>2.3.CO;2.
730	Olsen, K.H., Baldridge, W.S., Callender, J.F., 1987, Rio Grande rift: an overview:
731	Tectonophysics, v. 143, p. 119–139.
732	Olson, J.C., Marvin, R.F., Parker, R.L., and Mehnert, H.H., 1977, Age and tectonic setting of
733	lower Paleozoic alkalic and mafic rocks, carbonatites, and thorium veins in south-central
734	Colorado: U.S. Geological Survey Journal of Research, v. 5, p. 673-687
735	Pedrick, J.N., Karlstrom, K.E., and Bowring, S.A., 1998, Reconciliation of conflicting tectonic
736	models for Proterozoic rocks in northern New Mexico: Journal of Metamorphic Geology,
737	v. 16, p. 687–707, doi:10.1111/j.1525-1314.1998.00165.x.
738	Pisarevsky, S.A., Elming, S.Å., Pesonen, L.J., and Li, Z.X., 2014, Mesoproterozoic
739	paleogeography: Supercontinent and beyond: Precambrian Research, v. 244, p. 207–225,
740	https://doi.org/10.1016/j.precamres.2013.05.014.
741	Powell, L., 2020. The Proterozoic geology of the northern half of the Mount Evans 7.5-minute
742	quadrangle. M.S. Thesis, Colorado School of Mines, Golden, CO, USA, 58 pp.
743	Searle, M., 2013, Crustal melting, ductile flow, and deformation in mountain belts: Cause and
744	effect relationships: Lithosphere, v. 5, no. 6, p. 547-554.
745	Selverstone, J., Hodgins, M., Aleinikoff, J.N., and Fanning, C.M., 2000, Mesoproterozoic
746	reactivation of a Paleoproterozoic transcurrent boundary in the northern Colorado Front
747	Range: Implications for ~1.7- and 1.4-Ga tectonism: Rocky Mountain Geology, v. 35, p.
748	139–162, doi: 10.2113/35.2.139.

749	Shah, A.A., and Bell, T.H., 2012, Ninety million years of orogenesis, 250 million years of
750	quiescence and further orogenesis with no change in PT: Significance for the role of
751	deformation in porphyroblast growth: Journal of Earth System Science, v. 121, no. 6, p.
752	1365-1399.
753	Shaw, C.A., Karlstrom, K.E., Williams, M.L., Jercinovic, M.J., and McCoy, A.M., 2001,
754	Electron microprobe monazite dating of ca. 1.71–1.65 Ga and ca. 1.45–1.38 Ga
755	deformation in the Homestake shear zone, Colorado: Origin and early evolution of a
756	persistent intracontinental tectonic zone: Geology, v. 29, no. 8, p. 739-742, doi:
757	10.1130/0091-7613(2001)029<0739:EMMDOC>2.0.CO;2.
758	Shaw, C.A., Allen, J.L., 2007, Field rheology and structural evolution of the Homestake shear
759	zone, Colorado: Rocky Mountain Geology, v. 42, n. 1, p. 31-56.
760	Sheridan, D.M., and Marsh, S.P., 1976, Geologic map of the Squaw Pass quadrangle, Clear
761	Creek, Jefferson, and Gilpin Counties, Colorado: U.S. Geological Survey, scale 1:24,000.
762	Sheridan, D.M., Reed, J.C., Jr., and Bryant, Bruce, 1972, Geologic map of the Evergreen
763	quadrangle, Jefferson County, Colorado: U.S. Geological Survey, 1:24,000.
764	Shockley, D., 2021. Proterozoic structural history of the Montezuma mining district in the
765	central Colorado Front Range. M.S. Thesis, Colorado School of Mines, Golden, CO,
766	USA, 101 pp.
767	Siddoway, C.S., Givot, R.M., Bodle, C.D., and Heizler, M.T., 2000, Dynamic versus anorogenic
768	setting for Mesoproterozoic plutonism in the Wet Mountains, Colorado: Does the
769	interpretation depend on level of exposure?: Rocky Mountain Geology, v. 35, p. 91-111.
770	Sims, P.K., 1964, Geologic Map of the Central City Quadrangle, Colorado: U.S. Geological
771	Survey, scale 1:24,000.

772	Sims, P.K., and	Gable, D.J.,	1964,	Geology	of Precan	nbrian r	ocks,	Central	City	district,
-----	-----------------	--------------	-------	---------	-----------	----------	-------	---------	------	-----------

- Colorado: Geological Survey Professional Paper 474-C: Washington, United States
 Government Printing Office, p. C1-C51.
- 775 Spencer, C.J., Mitchell, R.N., Brown, M., 2021, Enigmatic Mid-Proterozoic orogens: hot, thin,

and low: Geophysical Research Letters, v. 48, e2021GL093312.

- Taylor, 1976, Geologic map of the Black Hawk quadrangle, Gilpin, Jefferson, and Clear Creek
 Counties, Colorado: U.S. Geological Survey, scale 1: 24,000.
- Tucker, R.D., and Gower, C.F., 1994, A U-Pb geochronological framework for the Pinware
- terrane, Grenville Province, southeast Labrador: The Journal of Geology, v. 102, p. 67–
- 781 78, https://doi.org/10.1086/629648.
- Tweto, O., and Sims, P.K., 1963, Precambrian Ancestry of the Colorado Mineral Belt:

Geological Society of America Bulletin, v. 74, p. 991-1014.

784 Wells, J.D., 1967, Geology of the Eldorado Springs quadrangle, Boulder and Jefferson Counties,

785 Colorado: U.S. Geological Survey Bulletin 1221-D, p. D1-D85, scale 1: 24,000.

- Whitmeyer, S.J., and Karlstrom, K.E., 2007, Tectonic model for the Proterozoic growth of North
 America: Geosphere, v. 3, p. 220–259.
- Widmann, B.L., Kirkham, R.M., and Beach, S.T., 2000, Geologic map of the Idaho Springs
 quadrangle, Clear Creek County, Colorado: Colorado Geological Survey, scale 1: 24,000.
- Windley, B.F., 1993, Proterozoic anorogenic magmatism and its orogenic connection: Geological
 Society [London] Journal, v. 150, p. 39–50.
- Wooden, J.L., and DeWitt, E., 1991, Pb isotope evidence for a major Early Proterozoic crustal
- boundary in western Arizona, *in* Karlstrom, K.E., ed., Proterozoic geology and ore deposits
- of Arizona: Arizona Geological Society Digest, v. 19, p. 27–50.

795	Wooden, J.L., Stacey, J.S., Doe, B., Howard, K.A., and Miller, D.M., 1988, Pb isotopic evidence
796	for the formation of Proterozoic crust in the southwestern United States, in Ernst, W.G.,
797	ed., Metamorphism and crustal evolution of the western United States: Rubey Volume VII:
798	Englewood Cliffs, New Jersey, Prentice Hall, p. 68-86.
799	Wrucke, C.T., and Wilson, R.F., 1967, Geologic map of the Boulder quadrangle, Boulder County,

- 800 Colorado: U.S. Geological Survey, scale 1:24,000.
- Young, E.J., 1991, Geologic map of the East Portal quadrangle, Boulder, Gilpin, and Grand
 Counties, Colorado: U.S. Geological Survey, scale 1: 24,000.

803

804 Figure Captions

Figure 1. Simplified geologic map of Proterozoic age provinces for North America and

Proterozoic rocks exposed in the western U.S., (modified from Holland et al., 2020; Daniel et al.,

2022a). Dashed black lines indicate the approximate area of the Pinware–Baraboo–Picuris (PBP)

808 Orogen. Abbreviations: Pic–Picuris Mountains; SR–Salt River Canyon.

809

Figure 2. Simplified map of the southwestern United States showing Proterozoic crustal blocks.

811 Modified after Jones et al. (2010; cf. Condie, 1986; Bennett and DePaolo, 1987; Karlstrom and

Bowring. 1988; Wooden et al., 1988; Wooden and DeWitt, 1991). Colorado Mineral Belt

813 indicated with dashed line. After Mahatma (2019).

814

Figure 3. Geologic map of the Idaho Springs-Ralston shear zone (IRSZ) area from Lytle (2016),

after Gable (2000; cf. Sims, 1964; Sims and Gable, 1964; Wells, 1967; Wrucke and Wilson,

1967; Sheridan et al., 1972; Bryant et al., 1973; Sheridan and Marsh, 1976; Taylor, 1976; and

Young, 1991). Automated Mineralogy (AM) samples and map areas as described in detail by
Lytle (2016) indicated.

820

Figure 4. Cross section sketch showing proposed deformation and timing of deformation from
Lytle (2016). (A) Regional metamorphism at ~1.68 Ga (D1). (B) Picuris orogeny at ~1.45-1.40
Ga (D2). (C) Picuris orogeny at ~1.45-1.40 Ga (D3).

824

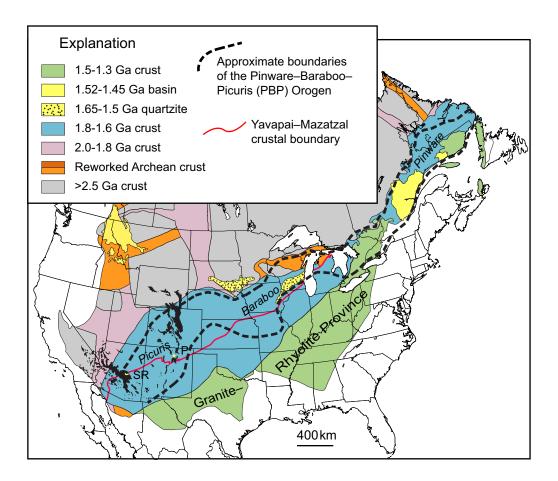
Figure 5. U-Pb LA-ICPMS zircon data from a quartzite (sample 366; Fig. 2). (A) Error ellipses

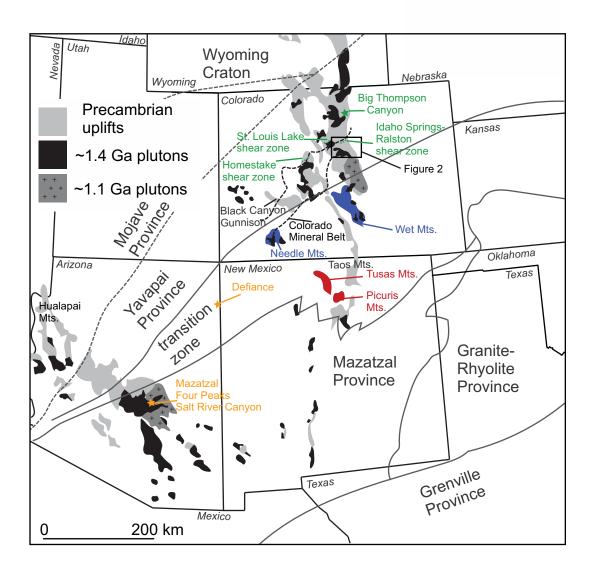
are 2σ and data that are >10% discordant gray. (B) Relative probability diagram showing

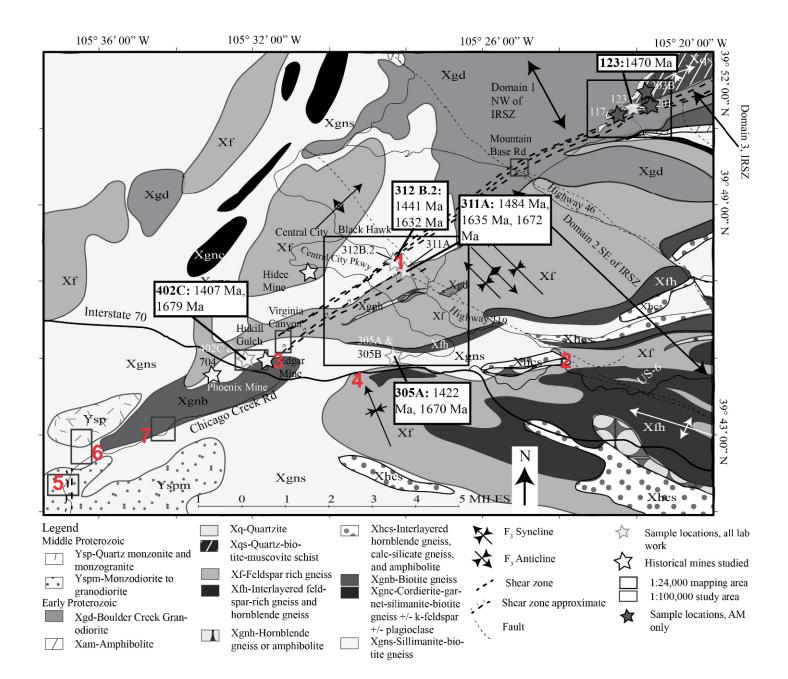
827	concordant data. (C) Float bar chart with weighted averages of ²⁰⁷ Pb/ ²⁰⁶ Pb ages for concordant
828	data. (D, E) Field photographs of quartzite looking NE.
829	
830	Fig. 6. Geologic map of the Wet Mountains after Jones et al. (2010).
831	
832	Fig. 7. Outcrop photo of the foliated Oak Creek pluton (left) and a photo of stop location 9
833	(right), with roadside exposure of the Oak Creek pluton.
834	
835	Fig. 8. Outcrop photos showing typical textures of migmatites in the southern Wet Mountains,
836	including quartz-feldspar migmatite, biotite migmatite, and garnet-biotite migmatite. Note
837	isoclinal, ptygmatic, and refolded folds, shear bands, and anatectic garnet.
838	
839	Figure 9. Idaho Springs-Ralston shear zone outcrop images.
839 840	Figure 9. Idaho Springs-Ralston shear zone outcrop images.
	Figure 9. Idaho Springs-Ralston shear zone outcrop images. Figure 10. (A-D) outcrop pictures, showing pegmatite along top-to-the-south shear. C is from
840	
840 841	Figure 10. (A-D) outcrop pictures, showing pegmatite along top-to-the-south shear. C is from
840 841 842	Figure 10. (A-D) outcrop pictures, showing pegmatite along top-to-the-south shear. C is from Google Earth. (E) U-Pb LA-ICPMS zircon data (error ellipses are 2σ), with weighted averages of
840 841 842 843	Figure 10. (A-D) outcrop pictures, showing pegmatite along top-to-the-south shear. C is from Google Earth. (E) U-Pb LA-ICPMS zircon data (error ellipses are 2σ), with weighted averages of
840 841 842 843 844	Figure 10. (A-D) outcrop pictures, showing pegmatite along top-to-the-south shear. C is from Google Earth. (E) U-Pb LA-ICPMS zircon data (error ellipses are 2σ), with weighted averages of 207 Pb/ 206 Pb ages indicated.
840 841 842 843 844 845	 Figure 10. (A-D) outcrop pictures, showing pegmatite along top-to-the-south shear. C is from Google Earth. (E) U-Pb LA-ICPMS zircon data (error ellipses are 2σ), with weighted averages of ²⁰⁷Pb/²⁰⁶Pb ages indicated. Figure 11. The Edgar Mine, the Colorado School of Mines Experimental Mine. (A) Geology
840 841 842 843 844 845 846	 Figure 10. (A-D) outcrop pictures, showing pegmatite along top-to-the-south shear. C is from Google Earth. (E) U-Pb LA-ICPMS zircon data (error ellipses are 2σ), with weighted averages of ²⁰⁷Pb/²⁰⁶Pb ages indicated. Figure 11. The Edgar Mine, the Colorado School of Mines Experimental Mine. (A) Geology graduate students in front of the entrance. (B) The USGS underground classroom. (C)NW-side-

850

851 Figure 12. Mega-shear structures indicating top-to-the-south movement.


852


- 853 Fig. 13. (A) Outcrop photo. (B) west-side-up S-C fabric.
- 854


Fig. 14. (A) Outcrop photo, looking SW. (B) Poles to foliation in the Mount Evans batholith at MountEvans (from Powell, 2020).

857

- **858** Fig. 15. (A) F_1 folds in migmatitic biotite gneiss looking down to the NE along an F_2 fold hinge. (B) F_1
- 859 folds in migmatitic biotite gneiss looking down to the NW.

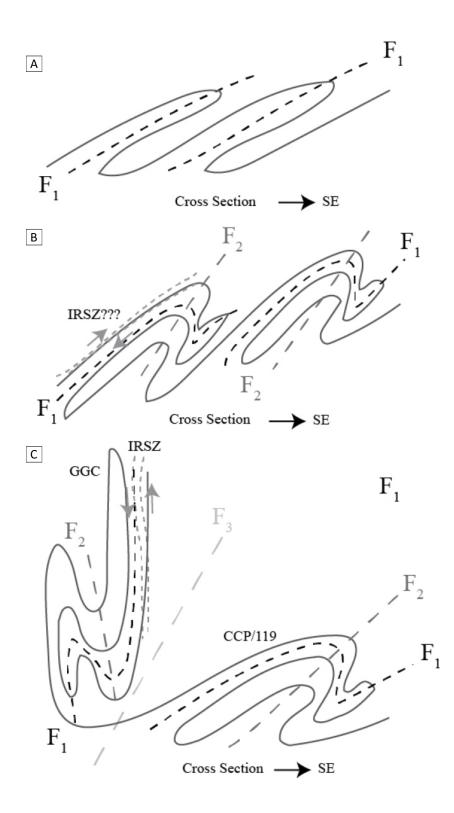
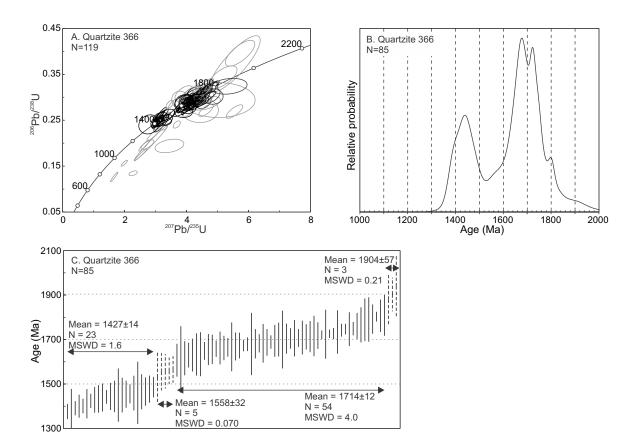
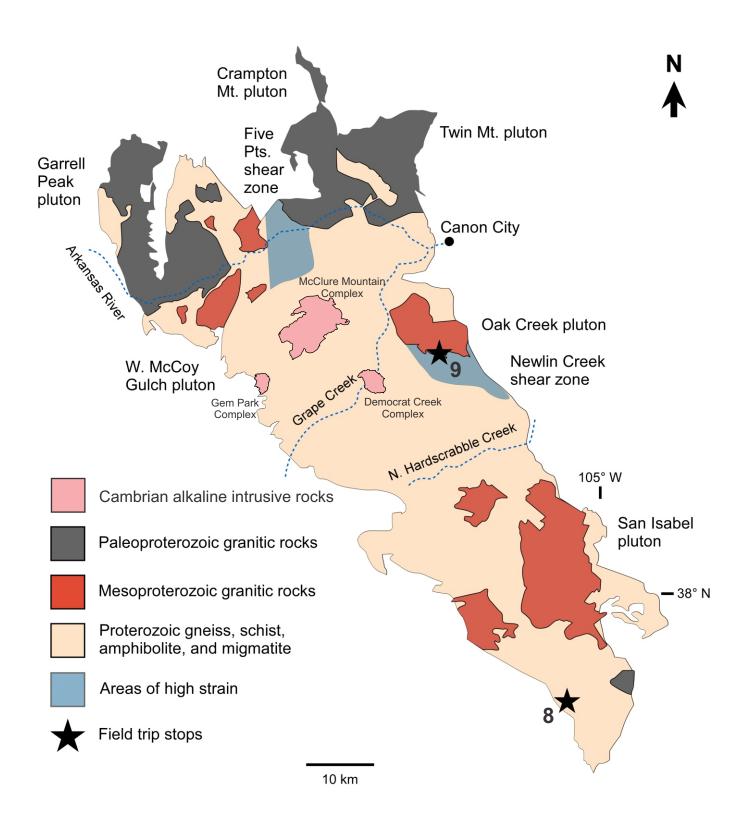
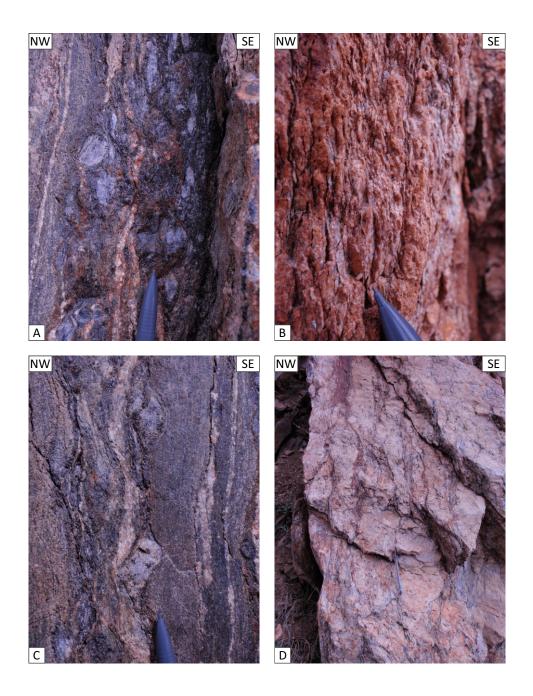
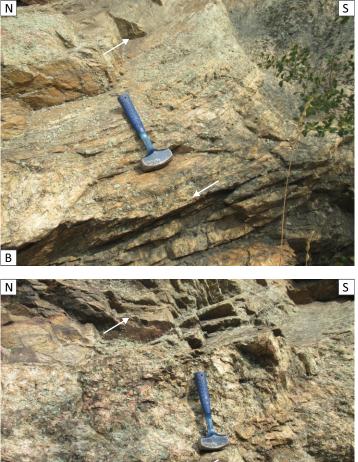
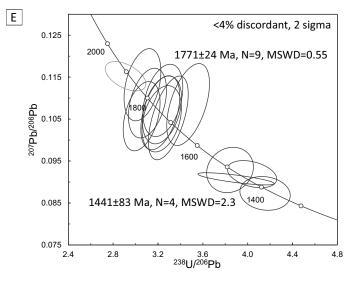




Figure 4







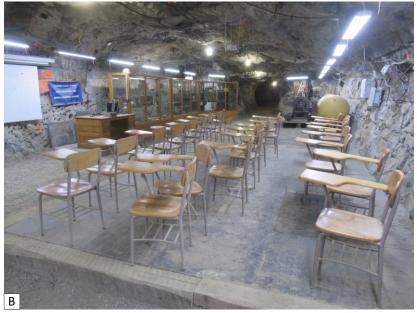

D

Figure 10

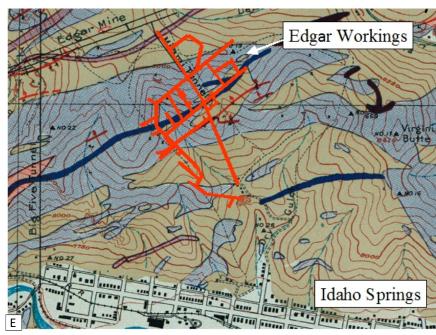


Figure 11

